Environmental Product Declaration

APPLE PUREE

Registration number
S-P-02385

Date of publication
2020/12/04

Date of validity
2025/12/04

CPC Code
214 Prepared and preserved fruits and nuts
2022 production

Programme
The International EPD® System
www.environdec.com

Date of revision
2023/05/10
Version: 03

Programme operator
EPD International AB

This EPD has been developed in accordance with ISO 14025. An EPD should provide current information, and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com
VOG Products is an innovative company located in Laives in the Northern Italy specialising in the processing of apples and other fruit. It is owned by 18 cooperatives in South Tyrol and Trentino and four producers organisations comprising over 13,000 family-run enterprises. Every year, VOG Products process more than 300,000 tonnes of raw goods to create healthy, safe products for the international market. Its product portfolio includes fruit juices, fruit pulp and purees, concentrated juice, natural flavourings, cooked fruit, frozen fruit and sliced fresh cut fruit.

Respectful handling of resources, corresponding management and intervention are important to give a contribute to outline the environmental impacts along the value chain and increase our transparency towards our stakeholders.
The apple puree

Apple puree is produced from ripe and health apples, grown with the method of integrated and organic production. The cleaned apples are transported to the cold sieving, the method assure particular gently raw material processing. Straining and sieves extract the skin, stalks and cores of the apple and the fruit pulp become hot sieved and gently refinement to a humogen puree. The pasteurisation process guarantee that our puree is well preserved and that top quality is maintained also in storage.

The quality of the raw materials is ensured by careful selection of varieties, cultivation areas, agronomic techniques and harvesting methods and times.

VOG Products has established strong relationships of deep trust with producers, who are able to guarantee freshness and quality that respect our very high standards.

Trentino - South Tyrol has perfect conditions for apple cultivation. It is home to the largest enclosed area in Europe for apple cultivation. The result is a rich harvest, a wide range of varieties and apples with a splendid colour and unique flavour.

One in five apples picked in Trentino-South Tyrol is processed by VOG Products to be made into apple puree or other products successfully exported all around the world.
PRODUCT CONTENTS

The puree is made from 100% apples from different varieties, to prevent the naturally oxidation process ascorbic acid is added (<0.1%).

Apples contain many vitamins and minerals, especially vitamin C and potassium. They are rich in pectin, a food fiber very important for a good digestion and for an extended sensation of satiety.

FUNCTIONAL UNIT

The data presented are referred to 1 kg of apple puree produced in VOG Products plant in Laives, Italy, and sold in several countries:

- in a 200 kg steel drum, relating to one steel drum containing an aseptic PE bag with 200 kg of product;
- in a 1200 kg steel goodpack, relating to one galvanized steel container containing an aseptic PE bag with 1200 kg of product;
- in a 4,2 kg tinplate can, relating to one can by tinplate with 4,2 kg of products;
- in a 1000 kg bag-in-box, relating to one PP box containing an aseptic PE bag with 1000 kg of product;
- Unpacked, in bulk.

The apple puree, subject of the declaration, are intended as beverage compounds. For this reason, the study is conducted up to the VOG Products customer, excluding any additional processing and repackaging of the product.

This EPD refers to the average values for the 2022 production:

Agricultural phase: 01/01/2022 - 31/10/2022
Production process phase: 01/07/2022 - 30/06/2022

ENERGY VALUE

<table>
<thead>
<tr>
<th>NUTRIZIONAL INFORMATION (PER 100 G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat <0.1 g</td>
</tr>
<tr>
<td>of which saturates <0.1 g</td>
</tr>
<tr>
<td>Carbohydrate 12.8 g</td>
</tr>
<tr>
<td>of which sugars 12.3 g</td>
</tr>
<tr>
<td>Food fibers 2.4 g</td>
</tr>
<tr>
<td>Proteins 0.6 g</td>
</tr>
<tr>
<td>Salt <0.1 g</td>
</tr>
</tbody>
</table>

54 kcal
The methodology for the calculation

The Environmental performance of the product was calculated using the LCA (life cycle analysis) methodology, by analyzing the impacts of the activities carried out during all the phases from the orchard until the delivery of the finished product to the client and the Packaging end of life.

The study was conducted following the specific product rules published for the “CPC code 2149 - Other prepared and preserved fruit and nuts”.

The contribution to the environmental impacts brought by generic data is less than 10% in all impact categories.
All the apples used for the apple puree come from the cooperatives of Trentino - South Tyrol (Italy).

10% of the apples used came directly from the field, the remaining **90% is conferred to VOG Products** after a preliminary selection process by the cooperatives’ plants. The percentages of the apple varieties used are presented in the graph.

The main environmental factors for the field phase concern fuels and water consumption, together with the use of pesticides and fertilizers. Data related to inputs used for the apples cultivation are primary and came directly from the farmers and then validated with the regulation of the interested areas.

Electricity and **water** are the main impacts of the first storage and preliminary processing phase. Data came from a sample of production plants and are primary.

The land use change was not included in the calculation since almost all the orchards are in the areas subject of the study for over 20 years.

Environmental performances related to apples **transport** from the field and the cooperatives’ plants to VOG Products plant were evaluated considering road transport (truck) using 2022 primary data. Secondary data, mainly from Ecoinvent database, are used for transport means.
PACKAGING AND AUXILIARY MATERIALS

UPSTREAM PACKAGING AND AUXILIARY MATERIALS

PACKAGING

The apple puree is delivered with five different solutions:

- **43% 200 KG STEEL DRUM**
 one steel drum containing an aseptic PE bag with 200 kg of product

- **22% 1200 KG STEEL GOODPACK**
 one galvanized steel container containing an aseptic PE bag with 1200 kg of product

- **10% 1000 KG BAG-IN-BOX**
 one PP box containing an aseptic PE bag with 1000 kg of product

- **10% 4,2 KG TINPLATE CAN**
 one can by tinplate with 4,2 kg of products

- **15% UNPACKED, IN BULK**

Primary data from the technical data sheet have been used. Secondary data (Ecoinvent) are used for environmental aspects associated with the production and processing of the materials.

PACKAGING FOR DISTRIBUTION

For the products shipped in the steel drum and in the tinplate can, the packaging for transport consists in a wooden pallet. The reuse of the pallet for 20 times has been considered. The data used have been collected by LCA database (mainly Ecoinvent).

AUXILIARY MATERIALS

Auxiliary materials (such as detergents and lubricant oil) environmental performances are evaluated by using primary data from the plant of the consumption during 2022 year.

Secondary data (Ecoinvent) are used for environmental aspects associated to materials production.
The well and tap water consumption is evaluated using primary data. The consumption of natural gas used for heat purpose is evaluated using primary data.

The environmental performances related to the production process are evaluated considering primary data for energy and water consumption and the waste production. Secondary data (Ecoinvent) are used for the environmental aspects related to the production of energy and water.

Unless otherwise specified, the overall value is attributed to the product using the mass allocation procedure, because the plant produces other products beyond apple puree.

Data are referred to year 2022 and are country specific (Italy), where available.

GENERAL INFORMATION

ELECTRICITY
Electricity consumption has been divided using mass allocation on the overall products of the department.

Electric energy production is related to hydropower and to photovoltaic technology.

NATURAL GAS
The consumption of natural gas used for heat purpose is evaluated using primary data.

WATER
The well and tap water consumption is evaluated using primary data.

WASTE
The primary data are collected by the plant registrations. The overall value is attributed to the product using the mass allocation procedure.
The apple puree is delivered in 24 countries from the VOG Products production plant based in Laives, Italy.

Primary data were used for distances covered by truck, ship and train for each packaging tipology. Secondary data (Ecoinvent database) were used for transport means.

Data refers to 2022.

The puree does not need any particular condition (such as refrigeration) during distribution.
Due to the complexity of the system, the environmental performances of Packaging end of life are elaborated not on the primary packaging (unknown) but on the packaging used for delivery as an average of the end of life scenarios of the most representative distribution countries for each type of packaging, covering at least 90% of the total volume delivered.*
Environmental results

<table>
<thead>
<tr>
<th>ENVIRONMENTAL IMPACT INDICATORS</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Raw materials cultivation and processing</td>
<td>Packaging and auxiliary materials</td>
<td>Transport and Production process</td>
<td>Distribution</td>
</tr>
<tr>
<td>Global Warming Potential (GWP)</td>
<td></td>
<td>9.05E-02</td>
<td>1.61E-01</td>
<td>1.72E-01</td>
<td>1.67E-01</td>
</tr>
<tr>
<td>fossil</td>
<td>kg CO₂ eq</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>biogenic</td>
<td>kg CO₂ eq</td>
<td>1.40E-03</td>
<td>1.85E-04</td>
<td>2.53E-05</td>
<td>9.37E-06</td>
</tr>
<tr>
<td>land use and land use change</td>
<td>kg CO₂ eq</td>
<td>8.32E-05</td>
<td>9.53E-03</td>
<td>7.54E-06</td>
<td>3.35E-06</td>
</tr>
<tr>
<td>TOTAL</td>
<td>kg CO₂ eq</td>
<td>9.20E-02</td>
<td>1.71E-01</td>
<td>1.72E-01</td>
<td>1.67E-01</td>
</tr>
<tr>
<td>Acidification potential, AP</td>
<td>kg SO₂ eq</td>
<td>4.32E-04</td>
<td>6.16E-04</td>
<td>1.45E-04</td>
<td>5.96E-04</td>
</tr>
<tr>
<td>Eutrophication potential, EP</td>
<td>kg PO₄⁻ eq</td>
<td>6.62E-05</td>
<td>1.45E-04</td>
<td>2.25E-05</td>
<td>9.44E-05</td>
</tr>
<tr>
<td>Photochemical oxidation potential, POFP</td>
<td>kg NMVOC eq</td>
<td>4.40E-04</td>
<td>4.99E-04</td>
<td>1.83E-04</td>
<td>7.25E-04</td>
</tr>
<tr>
<td>Abiotic impoverishment potential - elements</td>
<td>kg Sb eq</td>
<td>1.48E-07</td>
<td>7.83E-07</td>
<td>1.73E-09</td>
<td>5.83E-09</td>
</tr>
<tr>
<td>Abiotic impoverishment potential - fossil fuels</td>
<td>MJ, net calorific value</td>
<td>1.35E+00</td>
<td>2.42E+00</td>
<td>2.73E+00</td>
<td>2.20E+00</td>
</tr>
<tr>
<td>Water scarcity</td>
<td>m³ eq</td>
<td>2.23E+00</td>
<td>2.61E-02</td>
<td>7.33E-01</td>
<td>1.92E-03</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase.
Environmental results

USE OF RESOURCE

<table>
<thead>
<tr>
<th></th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Raw materials cultivation and processing</td>
<td>Packaging and auxiliary materials</td>
<td>Transport and Production process</td>
<td>Distribution</td>
</tr>
<tr>
<td>Renewable energy resources</td>
<td>Use as energy carrier</td>
<td>MJ, net calorific value</td>
<td>2.59E-01</td>
<td>5.94E-01</td>
<td>1.25E-01</td>
</tr>
<tr>
<td></td>
<td>Use as raw materials</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>MJ, net calorific value</td>
<td>2.59E-01</td>
<td>5.94E-01</td>
<td>1.25E-01</td>
</tr>
<tr>
<td>Non-renewable energy resources</td>
<td>Use as energy carrier</td>
<td>MJ, net calorific value</td>
<td>1.47E+00</td>
<td>2.09E+00</td>
<td>2.76E+00</td>
</tr>
<tr>
<td></td>
<td>Use as raw materials</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>4.89E-01</td>
<td>0.00E+00</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>MJ, net calorific value</td>
<td>1.47E+00</td>
<td>2.58E+00</td>
<td>2.76E+00</td>
</tr>
<tr>
<td>Secondary material</td>
<td></td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Renewable secondary fuels</td>
<td></td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Non-renewable secondary fuels</td>
<td></td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Net use of fresh water</td>
<td></td>
<td>m³</td>
<td>5.00E-02</td>
<td>1.46E-03</td>
<td>1.64E-02</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase.
Environmental results

STEEL DRUM

<table>
<thead>
<tr>
<th>WASTE*</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Raw materials cultivation and processing</td>
<td>Packaging and auxiliary materials</td>
<td>Transport and Production process</td>
<td>Distribution</td>
</tr>
<tr>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUT FLOWS</th>
<th>UNIT OF MEASURE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component for reuse</td>
<td>kg</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Material for recycling</td>
<td>kg</td>
<td>3,26E-03</td>
</tr>
<tr>
<td>Material for energy recovery</td>
<td>kg</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Exported energy, electricity</td>
<td>MJ, net calorific value</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Exported energy, thermal</td>
<td>MJ, net calorific value</td>
<td>0,00E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAND USE</th>
<th>UNIT OF MEASURE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land use</td>
<td>m2a</td>
<td>9,47E-01</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase. * Radioactive waste is negligible and therefore is set to zero. **The scrap to animal feed has been evaluated with an economic allocation and, due to its negligible value, has been here reported as output flow.
Environmental results

Environmental impact indicators

<table>
<thead>
<tr>
<th>Global Warming Potential (GWP)</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil Global Warming Potential</td>
<td>kg CO₂ eq</td>
<td>9.05E-02</td>
<td>4.28E-02</td>
<td>1.71E-01</td>
<td>1.69E-01</td>
</tr>
<tr>
<td>Biogenic Global Warming Potential</td>
<td>kg CO₂ eq</td>
<td>1.40E-03</td>
<td>1.73E-04</td>
<td>2.52E-05</td>
<td>9.48E-06</td>
</tr>
<tr>
<td>Land use and land use change</td>
<td>kg CO₂ eq</td>
<td>8.32E-05</td>
<td>9.46E-03</td>
<td>7.52E-06</td>
<td>3.37E-06</td>
</tr>
<tr>
<td>TOTAL</td>
<td>kg CO₂ eq</td>
<td>9.20E-02</td>
<td>5.24E-02</td>
<td>1.71E-01</td>
<td>1.69E-01</td>
</tr>
</tbody>
</table>

Other environmental indicators

<table>
<thead>
<tr>
<th>Environment Indicator</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidification potential, AP</td>
<td>kg SO₂ eq</td>
<td>4.32E-04</td>
<td>2.12E-04</td>
<td>1.40E-04</td>
<td>5.69E-04</td>
</tr>
<tr>
<td>Eutrophication potential, EP</td>
<td>kg PO₄eq</td>
<td>6.62E-05</td>
<td>8.48E-05</td>
<td>2.17E-05</td>
<td>9.24E-05</td>
</tr>
<tr>
<td>Photochemical oxidation potential, POFP</td>
<td>kg NMVOC eq</td>
<td>4.40E-04</td>
<td>1.55E-04</td>
<td>1.77E-04</td>
<td>7.09E-04</td>
</tr>
<tr>
<td>Abiotic impoverishment potential - elements</td>
<td>kg Sb eq</td>
<td>1.49E-07</td>
<td>1.68E-06</td>
<td>1.69E-09</td>
<td>5.93E-09</td>
</tr>
<tr>
<td>Abiotic impoverishment potential - fossil fuels</td>
<td>MJ, net calorific value</td>
<td>1.35E+00</td>
<td>7.41E-01</td>
<td>2.72E+00</td>
<td>2.22E+00</td>
</tr>
<tr>
<td>Water scarcity</td>
<td>m³ eq</td>
<td>2.23E+00</td>
<td>2.70E-02</td>
<td>7.33E-01</td>
<td>1.94E-03</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase.
Environmental results

<table>
<thead>
<tr>
<th>USE OF RESOURCE</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw materials cultivation</td>
<td>MJ, net calorific value</td>
<td>2.59E-01</td>
<td>4.21E-01</td>
<td>1.25E-01</td>
<td>5.99E-03</td>
</tr>
<tr>
<td>Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaging and auxiliary</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport and Production</td>
<td>MJ, net calorific value</td>
<td>1.47E+00</td>
<td>3.18E-01</td>
<td>2.75E+00</td>
<td>2.24E+00</td>
</tr>
<tr>
<td>process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>4.89E-01</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Packaging end of life</td>
<td>MJ, net calorific value</td>
<td>1.47E+00</td>
<td>8.07E-01</td>
<td>2.75E+00</td>
<td>2.24E+00</td>
</tr>
<tr>
<td></td>
<td>kg, net calorific value</td>
<td>0.00E+00</td>
<td>7.24E-04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Secondary material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewable</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>4.26E-04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Non-renewable secondary</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>fuels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net use of fresh water</td>
<td>m³, net calorific value</td>
<td>5.00E-02</td>
<td>1.1E-03</td>
<td>1.64E-02</td>
<td>4.31E-05</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase.
Environmental results

WASTE*

<table>
<thead>
<tr>
<th>WASTE</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
</tbody>
</table>

OUTPUT FLOWS

<table>
<thead>
<tr>
<th>OUTPUT FLOWS</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component for reuse</td>
<td>kg</td>
<td>0,00E+00</td>
<td>1,07E-02</td>
<td>0,00E+00</td>
<td>1,07E-02</td>
</tr>
<tr>
<td>Material for recycling</td>
<td>kg</td>
<td>3,26E-03</td>
<td>5,28E-04</td>
<td>6,06E-03</td>
<td>2,23E-02</td>
</tr>
<tr>
<td>Material for energy recovery</td>
<td>kg, MJ, net caloric value</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>4,41E-02</td>
<td>4,53E-02</td>
</tr>
<tr>
<td>Exported energy, electricity</td>
<td>MJ, net caloric value</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,01E-05</td>
</tr>
<tr>
<td>Exported energy, thermal</td>
<td>MJ, net caloric value</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>2,11E-05</td>
</tr>
</tbody>
</table>

LAND USE

<table>
<thead>
<tr>
<th>LAND USE</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land use</td>
<td>m2a</td>
<td>8,64E-01</td>
<td>3,22E-02</td>
<td>8,35E-04</td>
<td>8,98E-01</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components.

* Transports to the plant are included in the production process phase.

** Radioactive waste is negligible and therefore is set to zero.

***The scrap to animal feed has been evaluated with an economic allocation and, due to its negligible value, has been here reported as output flow.
Environmental results

Tinplate Can

ENVIRONMENTAL IMPACT INDICATORS

<table>
<thead>
<tr>
<th>UNIT OF MEASURE</th>
<th>Raw materials cultivation and processing</th>
<th>Packaging and auxiliary materials</th>
<th>Transport and Production process</th>
<th>Distribution</th>
<th>Packaging end of life</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>fossil kg CO₂ eq</td>
<td>9.05E-02</td>
<td>3.50E-01</td>
<td>1.72E-01</td>
<td>2.81E-01</td>
<td>6.32E-05</td>
<td>8.94E-01</td>
</tr>
<tr>
<td>biogenic kg CO₂ eq</td>
<td>1.40E-03</td>
<td>4.15E-03</td>
<td>2.53E-05</td>
<td>1.54E-05</td>
<td>6.27E-09</td>
<td>5.60E-03</td>
</tr>
<tr>
<td>land use and land use change kg CO₂ eq</td>
<td>8.32E-05</td>
<td>9.60E-03</td>
<td>7.54E-06</td>
<td>6.14E-06</td>
<td>3.29E-09</td>
<td>9.70E-03</td>
</tr>
<tr>
<td>TOTAL kg CO₂ eq</td>
<td>9.20E-02</td>
<td>3.64E-01</td>
<td>1.72E-01</td>
<td>2.81E-01</td>
<td>6.32E-05</td>
<td>9.10E-01</td>
</tr>
</tbody>
</table>

Global Warming Potential (GWP)

<table>
<thead>
<tr>
<th>Acidification potential, AP kg SO₂ eq</th>
<th>4.32E-04</th>
<th>8.87E-04</th>
<th>1.46E-04</th>
<th>1.81E-03</th>
<th>5.43E-07</th>
<th>3.28E-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eutrophication potential, EP kg PO₄⁻⁻ eq</td>
<td>6.62E-05</td>
<td>1.76E-04</td>
<td>2.26E-05</td>
<td>2.33E-04</td>
<td>9.14E-08</td>
<td>4.96E-04</td>
</tr>
<tr>
<td>Photochemical oxidation potential, POFP kg NMVOC eq</td>
<td>4.40E-04</td>
<td>6.95E-04</td>
<td>1.84E-04</td>
<td>1.81E-03</td>
<td>7.15E-07</td>
<td>3.13E-03</td>
</tr>
<tr>
<td>Abiotic impoverishment potential - elements kg Sb eq</td>
<td>1.49E-07</td>
<td>3.31E-07</td>
<td>1.73E-09</td>
<td>8.96E-09</td>
<td>2.53E-12</td>
<td>4.90E-07</td>
</tr>
<tr>
<td>Abiotic impoverishment potential - fossil fuels MJ, net calorific value 1.35E+00</td>
<td>4.21E+00</td>
<td>2.74E+00</td>
<td>3.66E+00</td>
<td>8.15E-04</td>
<td>1.20E+01</td>
<td></td>
</tr>
<tr>
<td>Water scarcity m³ eq 2.23E+00</td>
<td>4.68E-01</td>
<td>7.33E-01</td>
<td>3.20E-03</td>
<td>1.12E-06</td>
<td>3.44E+00</td>
<td></td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase.
Environmental results

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase.

<table>
<thead>
<tr>
<th>USE OF RESOURCE</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw materials cultivation and processing</td>
<td>MJ, net calorific value</td>
<td>2.59E-01</td>
<td>6.50E-01</td>
<td>1.25E-01</td>
<td>9.41E-03</td>
</tr>
<tr>
<td>Packaging and auxiliary materials</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Transport and Production process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaging end of life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>MJ, net calorific value</td>
<td>2.59E-01</td>
<td>6.50E-01</td>
<td>1.25E-01</td>
<td>9.41E-03</td>
</tr>
</tbody>
</table>

Renewable energy resources

Use as energy carrier	MJ, net calorific value	1.47E+00	4.24E+00	2.76E+00	3.68E+00	8.18E-04	1.22E+01
Use as raw materials	MJ, net calorific value	0.00E+00	4.89E-01	0.00E+00	0.00E+00	4.89E-01	
TOTAL	MJ, net calorific value	1.47E+00	4.72E+00	2.76E+00	3.68E+00	8.18E-04	1.26E+01

Non-renewable energy resources

Use as energy carrier	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use as raw materials	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TOTAL	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Secondary material

| kg | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |

Renewable secondary fuels

| MJ, net calorific value | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |

Non-renewable secondary fuels

| MJ, net calorific value | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |

Net use of fresh water

| m³ | 5.00E-02 | 2.74E-02 | 1.64E-02 | 6.58E-05 | 1.73E-08 | 9.39E-02 |
###Environmental results

<table>
<thead>
<tr>
<th>WASTE*</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw materials cultivation and processing</td>
<td>Packaging and auxiliary materials</td>
<td>Transport and Production process</td>
<td>Distribution</td>
<td>Packaging end of life</td>
</tr>
<tr>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUT FLOWS</th>
<th>UNIT OF MEASURE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component for reuse</td>
<td>kg</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Material for recycling</td>
<td>kg</td>
<td>3,26E-03</td>
</tr>
<tr>
<td>Material for energy recovery</td>
<td>kg</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Exported energy, electricity</td>
<td>MJ net calorific value</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Exported energy, thermal</td>
<td>MJ net calorific value</td>
<td>0,00E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAND USE</th>
<th>UNIT OF MEASURE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land use</td>
<td>m2a</td>
<td>9,47E-01</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase. * Radioactive waste is negligible and therefore is set to zero. **The scrap to animal feed has been evaluated with an economic allocation and, due to its negligible value, has been here reported as output flow.
Environmental results

BAG-IN-BOX

<table>
<thead>
<tr>
<th>ENVIRONMENTAL IMPACT INDICATORS</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Raw materials cultivation and processing</td>
<td>Packaging and auxiliary materials</td>
<td>Transport and Production process</td>
<td>Distribution</td>
</tr>
<tr>
<td>Global Warming Potential (GWP)</td>
<td>fossil kg CO₂ eq</td>
<td>9,05E-02</td>
<td>4,37E-02</td>
<td>1,71E-01</td>
<td>1,80E-01</td>
</tr>
<tr>
<td></td>
<td>biogenic kg CO₂ eq</td>
<td>1,40E-03</td>
<td>9,09E-05</td>
<td>2,52E-05</td>
<td>1,10E-05</td>
</tr>
<tr>
<td></td>
<td>land use and land use change kg CO₂ eq</td>
<td>8,32E-05</td>
<td>9,45E-03</td>
<td>7,51E-06</td>
<td>4,06E-06</td>
</tr>
<tr>
<td></td>
<td>TOTAL kg CO₂ eq</td>
<td>9,20E-02</td>
<td>5,32E-02</td>
<td>1,71E-01</td>
<td>1,81E-01</td>
</tr>
<tr>
<td></td>
<td>Acidification potential, AP kg SO₂ eq</td>
<td>4,32E-04</td>
<td>1,67E-04</td>
<td>1,39E-04</td>
<td>6,10E-04</td>
</tr>
<tr>
<td></td>
<td>Eutrophication potential, EP kg PO₄⁻⁻ eq</td>
<td>6,62E-05</td>
<td>8,51E-05</td>
<td>2,15E-05</td>
<td>9,91E-05</td>
</tr>
<tr>
<td></td>
<td>Photochemical oxidation potential, POFP kg NMVOC eq</td>
<td>4,40E-04</td>
<td>1,45E-04</td>
<td>1,75E-04</td>
<td>7,60E-04</td>
</tr>
<tr>
<td></td>
<td>Abiotic impoverishment potential - elements kg Sb eq</td>
<td>1,49E-07</td>
<td>3,02E-08</td>
<td>1,68E-09</td>
<td>6,33E-09</td>
</tr>
<tr>
<td></td>
<td>Abiotic impoverishment potential - fossil fuels MJ, net calorific value</td>
<td>1,35E+00</td>
<td>1,38E+00</td>
<td>2,71E+00</td>
<td>2,37E+00</td>
</tr>
<tr>
<td></td>
<td>Water scarcity m³ eq</td>
<td>2,23E+00</td>
<td>2,49E+00</td>
<td>7,33E+00</td>
<td>2,11E+01</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase.
Environmental results

<table>
<thead>
<tr>
<th>USE OF RESOURCE</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw materials</td>
<td>MJ, net calorific value</td>
<td>2.59E-01</td>
<td>4.35E-01</td>
<td>1.25E-01</td>
<td>7.40E-03</td>
</tr>
<tr>
<td>Packaging and auxiliary materials</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Transport and Production process</td>
<td>MJ, net calorific value</td>
<td>1.47E+00</td>
<td>1.02E+00</td>
<td>2.74E+00</td>
<td>2.39E+00</td>
</tr>
<tr>
<td>Distribution</td>
<td>MJ, net calorific value</td>
<td>1.51E+00</td>
<td>1.51E+00</td>
<td>2.74E+00</td>
<td>2.39E+00</td>
</tr>
<tr>
<td>Packaging end of life</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

Non-renewable energy resources

<table>
<thead>
<tr>
<th>USE OF RESOURCE</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use as energy carrier</td>
<td>MJ, net calorific value</td>
<td>1.47E+00</td>
<td>1.02E+00</td>
<td>2.74E+00</td>
<td>2.39E+00</td>
</tr>
<tr>
<td>Use as raw materials</td>
<td>MJ, net calorific value</td>
<td>1.47E+00</td>
<td>1.02E+00</td>
<td>2.74E+00</td>
<td>2.39E+00</td>
</tr>
</tbody>
</table>

Renewable secondary fuels

<table>
<thead>
<tr>
<th>USE OF RESOURCE</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use as energy carrier</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Use as raw materials</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

Non-renewable secondary fuels

<table>
<thead>
<tr>
<th>USE OF RESOURCE</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use as energy carrier</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Use as raw materials</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USE OF RESOURCE</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary material</td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Renewable secondary fuels</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Non-renewable secondary fuels</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USE OF RESOURCE</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net use of fresh water</td>
<td>m³</td>
<td>5.00E-02</td>
<td>1.07E-03</td>
<td>1.64E-02</td>
<td>4.99E-05</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components.

Transports to the plant are included in the production process phase.
Environmental results

<table>
<thead>
<tr>
<th>WASTE*</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cultivation and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>OUTPUT FLOWS</td>
<td>UNIT OF MEASURE</td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component for reuse</td>
<td>kg</td>
<td>0,00E+00</td>
<td>1,29E-02</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Material for recycling</td>
<td>kg</td>
<td>3,26E-03</td>
<td>1,47E-04</td>
<td>6,06E-03</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Material for energy recovery</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>4,41E-02</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Exported energy, electricity</td>
<td>MEJ</td>
<td>0,00E+00</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Exported energy, thermal</td>
<td>MEJ</td>
<td>0,00E+00</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>LAND USE</td>
<td>UNIT OF MEASURE</td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land use</td>
<td>m²a</td>
<td>8,64E-01</td>
<td>3,36E-02</td>
<td>8,36E-04</td>
<td>110E-04</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase.

* Radioactive waste is negligible and therefore is set to zero.

**The scrap to animal feed has been evaluated with an economic allocation and, due to its negligible value, has been here reported as output flow.
Environmental results

<table>
<thead>
<tr>
<th>ENVIRONMENTAL IMPACT INDICATORS</th>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Raw materials cultivation and processing</td>
<td>Packaging and auxiliary materials</td>
<td>Transport and Production process</td>
<td>Distribution</td>
</tr>
<tr>
<td>Global Warming Potential (GWP)</td>
<td>fossil kg CO₂ eq</td>
<td>9.05E-02</td>
<td>6.42E-03</td>
<td>1.69E-01</td>
<td>1.13E-01</td>
</tr>
<tr>
<td></td>
<td>biogenic kg CO₂ eq</td>
<td>1.40E-03</td>
<td>4.62E-05</td>
<td>2.51E-05</td>
<td>6.35E-06</td>
</tr>
<tr>
<td></td>
<td>land use and land use change kg CO₂ eq</td>
<td>8.32E-05</td>
<td>9.43E-03</td>
<td>7.48E-06</td>
<td>2.26E-06</td>
</tr>
<tr>
<td></td>
<td>TOTAL kg CO₂ eq</td>
<td>9.20E-02</td>
<td>1.59E-02</td>
<td>1.69E-01</td>
<td>1.13E-01</td>
</tr>
<tr>
<td>Acidification potential, AP kg SO₂ eq</td>
<td>4.32E-04</td>
<td>6.13E-05</td>
<td>1.34E-04</td>
<td>3.81E-04</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Eutrophication potential, EP kg PO₄⁻ eq</td>
<td>6.62E-05</td>
<td>6.16E-05</td>
<td>2.06E-05</td>
<td>6.19E-05</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Photochemical oxidation potential, POFP kg NMVOC eq</td>
<td>4.40E-04</td>
<td>3.44E-05</td>
<td>1.68E-04</td>
<td>4.75E-04</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Abiotic impoverishment potential - elements kg Sb eq</td>
<td>1.49E-07</td>
<td>2.78E-08</td>
<td>1.63E-09</td>
<td>3.97E-09</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Abiotic impoverishment potential - fossil fuels MJ net calorific value</td>
<td>1.35E+00</td>
<td>7.82E-02</td>
<td>2.69E+00</td>
<td>1.49E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Water scarcity m³ eq</td>
<td>2.23E+00</td>
<td>1.99E-02</td>
<td>7.33E-01</td>
<td>1.30E-03</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components. Transports to the plant are included in the production process phase.
USE OF RESOURCE

<table>
<thead>
<tr>
<th>UNIT OF MEASURE</th>
<th>Raw materials cultivation and processing</th>
<th>Packaging and auxiliary materials</th>
<th>Transport and Production process</th>
<th>Distribution</th>
<th>Packaging end of life</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable energy resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use as energy carrier</td>
<td>M.J., net calorific value</td>
<td>2.59E-01</td>
<td>3.81E-01</td>
<td>1.25E-01</td>
<td>4.01E-03</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Use as raw materials</td>
<td>M.J., net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>M.J., net calorific value</td>
<td>2.59E-01</td>
<td>3.81E-01</td>
<td>1.25E-01</td>
<td>4.01E-03</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Non-renewable energy resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use as energy carrier</td>
<td>M.J., net calorific value</td>
<td>1.47E+00</td>
<td>9.75E-02</td>
<td>2.72E+00</td>
<td>1.50E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Use as raw materials</td>
<td>M.J., net calorific value</td>
<td>0.00E+00</td>
<td>1.13E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>M.J., net calorific value</td>
<td>1.47E+00</td>
<td>9.86E-02</td>
<td>2.72E+00</td>
<td>1.50E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Secondary material</td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Renewable secondary fuels</td>
<td>M.J., net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Non-renewable secondary fuels</td>
<td>M.J., net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Net use of fresh water</td>
<td>m³</td>
<td>5.00E-02</td>
<td>8.65E-04</td>
<td>1.64E-02</td>
<td>2.89E-05</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components.

Transports to the plant are included in the production process phase.
Environmental results

WASTE*

<table>
<thead>
<tr>
<th>UNIT OF MEASURE</th>
<th>UPSTREAM</th>
<th>CORE</th>
<th>DOWNSTREAM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw materials cultivation and processing</td>
<td>Packaging and auxiliary materials</td>
<td>Transport and Production process</td>
<td>Distribution</td>
</tr>
<tr>
<td>Hazardous waste disposed</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
</tbody>
</table>

* Radioactive waste is negligible and therefore is set to zero.

OUTPUT FLOWS

<table>
<thead>
<tr>
<th>UNIT OF MEASURE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component for reuse</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Material for recycling</td>
<td>3,26E-03</td>
</tr>
<tr>
<td>Material for energy recovery</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Exported energy, electricity (MJ, net calorific value)</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Exported energy, thermal (MJ, net calorific value)</td>
<td>0,00E+00</td>
</tr>
</tbody>
</table>

LAND USE

<table>
<thead>
<tr>
<th>UNIT OF MEASURE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land use (m²a)</td>
<td>8,64E-01</td>
</tr>
<tr>
<td></td>
<td>3,08E-02</td>
</tr>
<tr>
<td></td>
<td>8,34E-04</td>
</tr>
<tr>
<td></td>
<td>9,08E-05</td>
</tr>
<tr>
<td></td>
<td>0,00E+00</td>
</tr>
</tbody>
</table>

The values reported are the result of rounding. That is why the results might be slightly different from the sum of the individual components.

**The scrap to animal feed has been evaluated with an economic allocation and, due to its negligible value, has been here reported as output flow.

Transports to the plant are included in the production process phase.

The scrap to animal feed has been evaluated with an economic allocation and, due to its negligible value, has been here reported as output flow.
VOG Products, as EPD owner, has the sole ownership, liability and responsibility of this EPD.

PROGRAM OPERATOR: EPD International AB, Box 210 60, SE-100 31 Stockholm, Sweden info@environdec.com

THIRD PARTY EPD VERIFICATION

Product category rules (PCR):
Prepared and preserved vegetable and fruit products, including juice
2019:10 Version 1.01
UN CPC group: 214 Prepared and preserved fruits and nuts

PCR review was conducted by:
The Technical Committee of the International EPD® System.
Chair: Filippo Sessa.
Contact via info@environdec.com

Independent verification of the declaration and data, according to ISO 14025:
☐ EPD process verification
☑ EPD verification - Third party verifier

Procedure for follow-up of data during EPD validity involves third party verifier:
☐ Yes
☑ No

Third party verifier: Maurizio Fieschi – fieschi@studiofieschi.it www.studiofieschi.it

Approved by: “The International EPD® System Technical Committee, supported by Secretariat

EPDs within the same product category but from different programmes may not be comparable

CONTACTS

VOG Products, Via A. Nobel 1 Straße I-39055 Leifers/Laives (BZ) - Italy info@vog-products.it www.vog-products.it

Technical support and graphic design: Life Cycle Engineering srl – Italy www_lcengineering.eu
Glossary and references

ACIDIFICATION
It is a phenomenon for which precipitation is unusually acidic, meaning that it has substandard levels of pH. It can have harmful effects on plants, aquatic animals and infrastructure. Acid rain is caused by emissions of SO₂, NOx and NH₃. The acidification potential is measured in mass of sulfur dioxide equivalent (SO₂-eq).

EUTROPHICATION
It is an excessive proliferation of vegetation in the aquatic ecosystems caused by the addition of nutrients into rivers, lakes or ocean, which determinates a lack of oxygen. The utrophication potential is mainly influenced by emission into water of phosphates and nitrates. It is expressed in mass of PO₄³⁻ equivalent.

CARBON FOOTPRINT
A product carbon footprint is the total amount of greenhouse gases produced along the entire life cycle. It is expressed in equivalent mass of carbon dioxide (CO₂-eq).

LAND USE CHANGE
The land use change is the change of the destination of use of a soil that modifies its ability to absorb atmospheric CO₂.

PHOTOCHEMICAL OXIDANTS CREATION
Chemical reaction brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight forms the ozone in the troposphere. The indicator is mainly influenced by VOCs (Volatile organic compounds) is usually expressed in mass of non-metallic organic compounds (NMVOC).

REFERENCES
International EPD® System; General Programme Instructions (EPD); Ver 3.01 del 2019/09/18
PCR for Fruits and nuts, Version 1.01 of 2019-7-10
Life Cycle Assessment (LCA) applicato al succo di mela e alla purea di mela prodotti da VOG Products - rev. 2023/05/04

DIFFERENCES BETWEEN THE PREVIOUS VERSION
All the primary data have been updated to their latest version.